1、掌握大数据的关键是删重和压缩技术。通常大数据集内会有70%到90%的数据简化。以PB容量计,能节约数万美元的磁盘成本。现代平台提供内联(对比后期处理)删重和压缩,大大降低了存储数据所需能力。合并Hadoop发行版 很多大型企业拥有多个Hadoop发行版本。可能是开发者需要或是企业部门已经适应了不同版本。
2、分布式存储技术 Hadoop的HDFS:该技术能够将数据分散地存储在多个节点上,通过多个节点的协同工作,实现对海量数据的高效存储和访问。
3、对象存储:对象存储是一种将大数据以对象的形式进行存储和访问的方式,通过对象存储系统可以轻松地扩展存储容量。一些常见的对象存储系统包括Amazon SGoogle Cloud Storage等。 数据仓库:数据仓库是用于集中存储和管理大量结构化和半结构化数据的存储系统。
在存储技术中,集群存储系统根据其数据管理方式主要分为两种类型:块级集群存储和文件级集群存储。以下是各知名品牌的代表产品:对于块级集群存储,有:IBM XIV集群存储系统以其高效的数据访问和处理能力而闻名,适合需要高I/O性能的场景。
云存储是在云计算(cloud computing)概念上延伸和发展出来的一个新的概念,是指通过集群应用、网格技术或分布式文机房集中监控系统件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。
集群存储有两种实现方式:一种是硬件基础架构加上软件,典型代表是SAN架构+IBM GPFS;另一种是专用集群存储,典型代表是Isilon、NetAPP GX以及PaNASas,其中NetApp GX是构建在NAS基础架构之上的,但是通过操作系统实现集群存储。从这个角度讲,集群存储与SAN或NAS不存在竞争关系,是实现不同存储需求的解决方案。
1、分布式存储技术:例如Hadoop的HDFS,它通过将数据分散存储在多个节点上,有效地处理了海量数据的存储问题。 分布式计算框架:例如Hadoop的MapReduce,它能够在庞大的计算机集群上并行处理大数据,从而实现快速的数据分析。
2、大数据在存储和管理时用到的关键技术主要包括: 分布式存储技术 Hadoop的HDFS:该技术能够将数据分散地存储在多个节点上,通过多个节点的协同工作,实现对海量数据的高效存储和访问。
3、分布式计算技术:这是处理大数据时的一项关键技术,它允许将数据和计算任务分布到多个计算机节点上,以实现高效的处理和分析。 非结构化数据库技术:由于大数据中包含了大量的非结构化数据,如文本、图片、视频等,因此非结构化数据库技术变得至关重要,它能够存储和查询这些非结构化数据。
4、大数据预处理技术 大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
5、大数据技术涉及的以下关键技术: 云计算:云计算平台提供弹性和可扩展的基础设施,用于存储、处理和分析大数据。 大数据存储:分布式文件系统和 Nosql 数据库(如 Hadoop、Cassandra、MongoDB)用于存储和管理海量非结构化和半结构化数据。
6、大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。